Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Inorg Biochem ; 252: 112474, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38176365

RESUMEN

To study how proline residues affect the dynamics of Ω-loop D (residues 70 to 85) of cytochrome c, we prepared G83P and G83A variants of yeast iso-1-cytochrome c (iso-1-Cytc) in the presence and absence of a K73H mutation. Ω-loop D is important in controlling both the electron transfer function of Cytc and the peroxidase activity of Cytc used in apoptosis because it provides the Met80 heme ligand. The G83P and G83A mutations have no effect on the global stability of iso-1-Cytc in presence or absence of the K73H mutation. However, both mutations destabilize the His73-mediated alkaline conformer relative to the native state. pH jump stopped-flow experiments show that the dynamics of the His73-mediated alkaline transition are significantly enhanced by the G83P mutation. Gated electron transfer studies show that the enhanced dynamics result from an increased rate of return to the native state, whereas the rate of loss of Met80 ligation is unchanged by the G83P mutation. Thus, the G83P substitution does not stiffen the conformation of the native state. Because bis-His heme ligation occurs when Cytc binds to cardiolipin-containing membranes, we studied the effect of His73 ligation on the peroxidase activity of Cytc, which acts as an early signal in apoptosis by causing oxygenation of cardiolipin. We find that the His73 alkaline conformer suppresses the peroxidase activity of Cytc. Thus, the bis-His ligated state of Cytc formed upon binding to cardiolipin is a negative effector for the peroxidase activity of Cytc early in apoptosis.


Asunto(s)
Citocromos c , Histidina , Citocromos c/química , Histidina/química , Cardiolipinas , Saccharomyces cerevisiae/metabolismo , Hemo/química , Peroxidasas/genética , Peroxidasas/metabolismo , Concentración de Iones de Hidrógeno , Conformación Proteica
2.
Elife ; 122023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38018500

RESUMEN

The neuronal calcium sensor 1 (NCS-1), an EF-hand Ca2+ binding protein, and Ric-8A coregulate synapse number and probability of neurotransmitter release. Recently, the structures of Ric-8A bound to Gα have revealed how Ric-8A phosphorylation promotes Gα recognition and activity as a chaperone and guanine nucleotide exchange factor. However, the molecular mechanism by which NCS-1 regulates Ric-8A activity and its interaction with Gα subunits is not well understood. Given the interest in the NCS-1/Ric-8A complex as a therapeutic target in nervous system disorders, it is necessary to shed light on this molecular mechanism of action at atomic level. We have reconstituted NCS-1/Ric-8A complexes to conduct a multimodal approach and determine the sequence of Ca2+ signals and phosphorylation events that promote the interaction of Ric-8A with Gα. Our data show that the binding of NCS-1 and Gα to Ric-8A are mutually exclusive. Importantly, NCS-1 induces a structural rearrangement in Ric-8A that traps the protein in a conformational state that is inaccessible to casein kinase II-mediated phosphorylation, demonstrating one aspect of its negative regulation of Ric-8A-mediated G-protein signaling. Functional experiments indicate a loss of Ric-8A guanine nucleotide exchange factor (GEF) activity toward Gα when complexed with NCS-1, and restoration of nucleotide exchange activity upon increasing Ca2+ concentration. Finally, the high-resolution crystallographic data reported here define the NCS-1/Ric-8A interface and will allow the development of therapeutic synapse function regulators with improved activity and selectivity.


Asunto(s)
Calcio , Factores de Intercambio de Guanina Nucleótido , Calcio/metabolismo , Fosforilación , Factores de Intercambio de Guanina Nucleótido/metabolismo , Transducción de Señal , Chaperonas Moleculares/metabolismo
3.
J Am Chem Soc ; 145(42): 22979-22992, 2023 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-37815921

RESUMEN

The accurate modeling of energetic contributions to protein structure is a fundamental challenge in computational approaches to protein analysis and design. We describe a general computational method, EmCAST (empirical Cα stabilization), to score and optimize the sequence to the structure in proteins. The method relies on an empirical potential derived from the database of the Cα dihedral angle preferences for all possible four-residue sequences, using the data available in the Protein Data Bank. Our method produces stability predictions that naturally correlate one-to-one with the experimental results for solvent-exposed mutation sites. EmCAST predicted four mutations that increased the stability of a three-helix bundle, UBA(1), from 2.4 to 4.8 kcal/mol by optimizing residues in both helices and turns. For a set of eight variants, the predicted and experimental stabilizations correlate very well (R2 = 0.97) with a slope near 1 and with a 0.16 kcal/mol standard error for EmCAST predictions. Tests against literature data for the stability effects of surface-exposed mutations show that EmCAST outperforms the existing stability prediction methods. UBA(1) variants were crystallized to verify and analyze their structures at an atomic resolution. Thermodynamic and kinetic folding experiments were performed to determine the magnitude and mechanism of stabilization. Our method has the potential to enable the rapid, rational optimization of natural proteins, expand the analysis of the sequence/structure relationship, and supplement the existing protein design strategies.


Asunto(s)
Pliegue de Proteína , Proteínas , Proteínas/genética , Proteínas/química , Mutación , Bases de Datos de Proteínas
4.
Nat Commun ; 11(1): 1077, 2020 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-32103024

RESUMEN

Ric-8A is a cytosolic Guanine Nucleotide exchange Factor (GEF) that activates heterotrimeric G protein alpha subunits (Gα) and serves as an essential Gα chaperone. Mechanisms by which Ric-8A catalyzes these activities, which are stimulated by Casein Kinase II phosphorylation, are unknown. We report the structure of the nanobody-stabilized complex of nucleotide-free Gα bound to phosphorylated Ric-8A at near atomic resolution by cryo-electron microscopy and X-ray crystallography. The mechanism of Ric-8A GEF activity differs considerably from that employed by G protein-coupled receptors at the plasma membrane. Ric-8A engages a specific conformation of Gα at multiple interfaces to form a complex that is stabilized by phosphorylation within a Ric-8A segment that connects two Gα binding sites. The C-terminus of Gα is ejected from its beta sheet core, thereby dismantling the GDP binding site. Ric-8A binds to the exposed Gα beta sheet and switch II to stabilize the nucleotide-free state of Gα.


Asunto(s)
Quinasa de la Caseína II/metabolismo , Subunidades alfa de la Proteína de Unión al GTP/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Animales , División Celular Asimétrica/fisiología , Sitios de Unión/fisiología , Camélidos del Nuevo Mundo , Membrana Celular/metabolismo , Microscopía por Crioelectrón , Cristalografía por Rayos X , Desarrollo Embrionario/fisiología , Chaperonas Moleculares/metabolismo , Complejos Multiproteicos/ultraestructura , Fosforilación , Unión Proteica/fisiología , Conformación Proteica
5.
J Am Chem Soc ; 138(51): 16770-16778, 2016 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-27990813

RESUMEN

Cytochrome c can acquire peroxidase activity when it binds to cardiolipin in mitochondrial membranes. The resulting oxygenation of cardiolipin by cytochrome c provides an early signal for the onset of apoptosis. The structure of this enzyme-substrate complex is a matter of considerable debate. We present three structures at 1.7-2.0 Å resolution of a domain-swapped dimer of yeast iso-1-cytochrome c with the detergents, CYMAL-5, CYMAL-6, and ω-undecylenyl-ß-d-maltopyranoside, bound in a channel that places the hydrocarbon moieties of these detergents next to the heme. The heme is poised for peroxidase activity with water bound in place of Met80, which serves as the axial heme ligand when cytochrome c functions as an electron carrier. The hydroxyl group of Tyr67 sits 3.6-4.0 Å from the nearest carbon of the detergents, positioned to act as a relay in radical abstraction during peroxidase activity. Docking studies with linoleic acid, the most common fatty acid component of cardiolipin, show that C11 of linoleic acid can sit adjacent to Tyr67 and the heme, consistent with the oxygenation pattern observed in lipidomics studies. The well-defined hydrocarbon binding pocket provides atomic resolution evidence for the extended lipid anchorage model for cytochrome c/cardiolipin binding. Dimer dissociation/association kinetics for yeast versus equine cytochrome c indicate that formation of mammalian cytochrome c dimers in vivo would require catalysis. However, the dimer structure shows that only a modest deformation of monomeric cytochrome c would suffice to form the hydrocarbon binding site occupied by these detergents.


Asunto(s)
Citocromos c/química , Citocromos c/metabolismo , Hidrocarburos/metabolismo , Animales , Sitios de Unión , Detergentes/metabolismo , Estabilidad de Enzimas , Caballos , Ácido Linoleico/metabolismo , Simulación del Acoplamiento Molecular , Dominios Proteicos , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Propiedades de Superficie
6.
Biochemistry ; 55(19): 2681-93, 2016 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-27104373

RESUMEN

Overall protein stability is thought to have an important impact on the millisecond time scale dynamics modulating enzyme function. In order to better understand the effects of overall stability on the substructure dynamics of mitochondrial cytochrome c, we test the effect of a destabilizing L85A mutation on the kinetics and equilibrium thermodynamics of the alkaline conformational transition. The alkaline conformational transition replaces the Met80 ligand of the heme with a lysine residue from Ω-loop D, the heme crevice loop, consisting of residues 70-85. Residues 67-87 are the most conserved portion of the sequence of mitochondrial cytochrome c, suggesting that this region is of prime importance for function. Mutations to Ω-loop D affect the stability of the heme crevice directly, modulating the pKapp of the alkaline transition. Two variants of yeast iso-1-cytochrome c, WT*/L85A and WT*/K73H/L85A, were prepared for these studies. Guanidine-HCl unfolding monitored by circular dichroism and pH titrations at 695 nm, respectively, were used to study the thermodynamics of global and local unfolding of these variants. The kinetics of the alkaline transition were measured by pH-jump stopped-flow methods. Gated electron transfer techniques using bis(2,2',2″-terpyridine)cobalt(II) as a reducing reagent were implemented to measure the heme crevice dynamics for the WT*/K73H/L85A variant. Contrary to the expectation that dynamics around the heme crevice would be faster for the less stable WT*/K73H/L85A variant, based on the behavior of psychrophilic versus mesophilic enzymes, they were similar to those for a variant without the L85A mutation. In fact, below pH 7, the dynamics of the WT*/K73H/L85A variant were slower.


Asunto(s)
Citocromos c/química , Proteínas Mitocondriales/química , Simulación de Dinámica Molecular , Mutación Missense , Sustitución de Aminoácidos , Citocromos c/genética , Citocromos c/metabolismo , Estabilidad de Enzimas , Humanos , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo
7.
J Inorg Biochem ; 158: 62-69, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26775610

RESUMEN

The hypothesis that the recent rapid evolution of primate cytochromes c, which primarily involves residues in the least stable Ω-loop (Ω-loop C, residues 40-57), stabilizes the heme crevice of cytochrome c relative to other mammals, is tested. To accomplish this goal, we have compared the properties of human and spider monkey cytochrome c and a set of four variants produced in the process of converting human cytochrome c into spider monkey cytochrome c. The global stability of all variants has been measured by guanidine hydrochloride denaturation. The stability of the heme crevice has been assessed with the alkaline conformational transition. Structural insight into the effects of the five amino acid substitutions needed to convert human cytochrome c into spider monkey cytochrome c is provided by a 1.15Å resolution structure of spider monkey cytochrome c. The global stability for all variants is near 9.0kcal/mol at 25°C and pH7, which is higher than that observed for other mammalian cytochromes c. The heme crevice stability is more sensitive to the substitutions required to produce spider monkey cytochrome c with decreases of up to 0.5 units in the apparent pKa of the alkaline conformational transition relative to human cytochrome c. The structure of spider monkey cytochrome c indicates that the Y46F substitution destabilizes the heme crevice by disrupting an extensive hydrogen bond network that connects three surface loops including Ω-loop D (residues 70-85), which contains the Met80 heme ligand.


Asunto(s)
Citocromos c/química , Citocromos c/metabolismo , Hemo/química , Hemo/metabolismo , Sustitución de Aminoácidos , Animales , Atelinae , Dicroismo Circular , Cristalografía por Rayos X , Humanos , Enlace de Hidrógeno , Concentración de Iones de Hidrógeno , Cinética , Pliegue de Proteína , Estabilidad Proteica
8.
J Biol Inorg Chem ; 20(5): 805-19, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25948392

RESUMEN

Trimethyllysine 72 (tmK72) has been suggested to play a role in sterically constraining the heme crevice dynamics of yeast iso-1-cytochrome c mediated by the Ω-loop D cooperative substructure (residues 70-85). A tmK72A mutation causes a gain in peroxidase activity, a function of cytochrome c that is important early in apoptosis. More than one higher energy state is accessible for the Ω-loop D substructure via tier 0 dynamics. Two of these are alkaline conformers mediated by Lys73 and Lys79. In the current work, the effect of the tmK72A mutation on the thermodynamic and kinetic properties of wild-type iso-1-cytochrome c (yWT versus WT*) and on variants carrying a K73H mutation (yWT/K73H versus WT*/K73H) is studied. Whereas the tmK72A mutation confers increased peroxidase activity in wild-type yeast iso-1-cytochrome c and increased dynamics for formation of a previously studied His79-heme alkaline conformer, the tmK72A mutation speeds return of the His73-heme alkaline conformer to the native state through destabilization of the His73-heme alkaline conformer relative to the native conformer. These opposing behaviors demonstrate that the response of the dynamics of a protein substructure to mutation depends on the nature of the perturbation to the substructure. For a protein substructure which mediates more than one function of a protein through multiple non-native structures, a mutation could change the partitioning between these functions. The current results suggest that the tier 0 dynamics of Ω-loop D that mediates peroxidase activity has similarities to the tier 0 dynamics required to form the His79-heme alkaline conformer.


Asunto(s)
Citocromos c/metabolismo , Lisina/análogos & derivados , Saccharomyces cerevisiae/química , Termodinámica , Citocromos c/química , Concentración de Iones de Hidrógeno , Cinética , Lisina/química , Lisina/genética , Lisina/metabolismo , Modelos Moleculares , Saccharomyces cerevisiae/metabolismo , Cloruro de Sodio/química , Cloruro de Sodio/metabolismo
9.
Proc Natl Acad Sci U S A ; 111(18): 6648-53, 2014 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-24760830

RESUMEN

At the onset of apoptosis, the peroxidation of cardiolipin at the inner mitochondrial membrane by cytochrome c requires an open coordination site on the heme. We report a 1.45-Å resolution structure of yeast iso-1-cytochrome c with the Met80 heme ligand swung out of the heme crevice and replaced by a water molecule. This conformational change requires modest adjustments to the main chain of the heme crevice loop and is facilitated by a trimethyllysine 72-to-alanine mutation. This mutation also enhances the peroxidase activity of iso-1-cytochrome c. The structure shows a buried water channel capable of facilitating peroxide access to the active site and of moving protons produced during peroxidase activity to the protein surface. Alternate positions of the side chain of Arg38 appear to mediate opening and closing of the buried water channel. In addition, two buried water molecules can adopt alternate positions that change the network of hydrogen bonds in the buried water channel. Taken together, these observations suggest that low and high proton conductivity states may mediate peroxidase function. Comparison of yeast and mammalian cytochrome c sequences, in the context of the steric factors that permit opening of the heme crevice, suggests that higher organisms have evolved to inhibit peroxidase activity, providing a more stringent barrier to the onset of apoptosis.


Asunto(s)
Citocromos c/química , Citocromos c/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Apoptosis , Cristalografía por Rayos X , Citocromos c/genética , Transporte de Electrón , Hemo/química , Enlace de Hidrógeno , Peroxidación de Lípido , Mitocondrias/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Peroxidasa/química , Peroxidasa/genética , Peroxidasa/metabolismo , Conformación Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...